why blockchain

Why we need Blockchain at all?

We have seen operations often waste effort on duplicate record keeping and third-party validations. We also know that record-keeping systems can be vulnerable to fraud and cyber-attacks. Limited transparency can slow data verification process. And with the arrival of IoT, transaction volumes have exploded like never before. As a result, all of this slows business, drains the bottom line that means we need a better way. The answer is Blockchain.

Blockchain is a shared, immutable ledger that facilitates the process of recording transactions and tracking assets in a business network. An asset can be tangible (a house, car, cash, land) or intangible (intellectual property, patents, copyrights, branding). Virtually anything of value can be tracked and traded on a blockchain network, reducing risk and cutting costs for all involved.

Why blockchain is important

Business runs on information. The faster it’s received and the more accurate it is, the better. Blockchain is ideal for delivering that information because it provides immediate, shared and completely transparent information stored on an immutable ledger that can be accessed only by permissioned network members. A blockchain network can track orders, payments, accounts, production and much more. And because members share a single view of the truth, you can see all details of a transaction end to end, giving you greater confidence, as well as new efficiencies and opportunities.

Elements of Blockchain

Distributed ledger technology

Distributed ledger technology (DLT) is a digital system for recording the transaction of assets in which the transactions and their details are recorded in multiple places at the same time. Unlike traditional databases, distributed ledgers have no central data store or administration functionality.

The best known example of such a distributed ledger technology is blockchain. Block chain is the underlying ledger technology behind Bitcoin, a cryptocurrency. All Bitcoin transactions are processed and recorded on the Block chain.

Distributed Ledger Technology (DLT) is a protocol that enables the secure functioning of a decentralized digital database. Distributed networks eliminate the need for a central authority to keep a check against manipulation.

DLT allows for storage of all information in a secure and accurate manner using cryptography. The same can be accessed using “keys” and cryptographic signatures. Once the information is stored, it becomes an immutable database and is governed by the rules of the network.

The idea of a distributed ledger is not totally new, and many organizations do maintain data at different locations. However, each location is typically on a connected central system, which updates each one of them periodically. This makes the central database vulnerable to cyber-crime and prone to delays since a central body has to update each distantly located note.

The very nature of a decentralized ledger makes them immune to a cybercrime, all the copies stored across the network need to be attacked at the same time for the attack to be successful. Additionally, the simultaneous (peer-to-peer) sharing and updating of records make the whole process much faster, more effective, and cheaper.

DLT has great potential to revolutionize the way governments, institutions, and companies work. It can help governments with tax collection, the issuance of passports, recording land registries and licenses, and the outlay of Social Security benefits as well as voting procedures. The technology is making waves in industries such as finance, music and entertainment, diamond and other precious assets, art, supply chains of various commodities, and more.

In addition to startups, many big companies such as IBM and Microsoft are experimenting with the blockchain technology. Some of the most popular distributed ledger protocols are Ethereum, Hyperledger Fabric, R3 Corda, and Quorum.

Immutable records

Immutable ledger in blockchain refers to any records that have the ability to remain unchanged. It cannot be altered and hence the data cannot be changed with ease, thereby making sure that the security is quite tight. Immutability means that it is very difficult to make changes without collusion.
No participant can change or tamper with a transaction after it’s been recorded to the shared ledger. If a transaction record includes an error, a new transaction must be added to reverse the error, and both transactions are then visible.

Smart contracts

Smart contracts are code written into a blockchain that executes the terms of an agreement or contract from outside the chain. It automates the actions that would otherwise be completed by the parties in the agreement, which removes the need for both parties to trust each other.
To speed transactions, a set of rules — called a smart contract — is stored on the blockchain and executed automatically. A smart contract can define conditions for corporate bond transfers, include terms for travel insurance to be paid and much more.

How blockchain works

As we now know, blocks on Bitcoin’s blockchain store data about monetary transactions. Today, there are more than 10,000 other cryptocurrency systems running on blockchain. But it turns out that blockchain is actually a reliable way of storing data about other types of transactions as well.
Some companies that have already incorporated blockchain include Walmart, Pfizer, AIG, Siemens, Unilever, and a host of others. For example, IBM has created its Food Trust blockchain to trace the journey that food products take to get to their locations.
Why do this? The food industry has seen countless outbreaks of E. coli, salmonella, and listeria, as well as hazardous materials being accidentally introduced to foods. In the past, it has taken weeks to find the source of these outbreaks or the cause of sickness from what people are eating. Using blockchain gives brands the ability to track a food product’s route from its origin, through each stop it makes, and finally, its delivery. If a food is found to be contaminated, then it can be traced all the way back through each stop to its origin. Not only that, but these companies can also now see everything else it may have come in contact with, allowing the identification of the problem to occur far sooner and potentially saving lives. This is one example of blockchain in practice, but there are many other forms of blockchain implementation.

Banking and Finance

Perhaps no industry stands to benefit from integrating blockchain into its business operations more than banking. Financial institutions only operate during business hours, usually five days a week. That means if you try to deposit a check on Friday at 6 p.m., you will likely have to wait until Monday morning to see that money hit your account. Even if you do make your deposit during business hours, the transaction can still take one to three days to verify due to the sheer volume of transactions that banks need to settle. Blockchain, on the other hand, never sleeps.
By integrating blockchain into banks, consumers can see their transactions processed in as little as 10 minutes—basically the time it takes to add a block to the blockchain, regardless of holidays or the time of day or week. With blockchain, banks also have the opportunity to exchange funds between institutions more quickly and securely. In the stock trading business, for example, the settlement and clearing process can take up to three days (or longer, if trading internationally), meaning that the money and shares are frozen for that period of time.
Given the size of the sums involved, even the few days that the money is in transit can carry significant costs and risks for banks.

Currency

Blockchain forms the bedrock for cryptocurrencies like Bitcoin. The U.S. dollar is controlled by the Federal Reserve. Under this central authority system, a user’s data and currency are technically at the whim of their bank or government. If a user’s bank is hacked, the client’s private information is at risk. If the client’s bank collapses or the client lives in a country with an unstable government, the value of their currency may be at risk. In 2008, several failing banks were bailed out—partially using taxpayer money. These are the worries out of which Bitcoin was first conceived and developed.
By spreading its operations across a network of computers, blockchain allows Bitcoin and other cryptocurrencies to operate without the need for a central authority. This not only reduces risk but also eliminates many of the processing and transaction fees. It can also give those in countries with unstable currencies or financial infrastructures a more stable currency with more applications and a wider network of individuals and institutions with whom they can do business, both domestically and internationally.
Using cryptocurrency wallets for savings accounts or as a means of payment is especially profound for those who have no state identification. Some countries may be war-torn or have governments that lack any real infrastructure to provide identification. Citizens of such countries may not have access to savings or brokerage accounts—and, therefore, no way to safely store wealth.

Healthcare

Healthcare providers can leverage blockchain to securely store their patients’ medical records. When a medical record is generated and signed, it can be written into the blockchain, which provides patients with the proof and confidence that the record cannot be changed. These personal health records could be encoded and stored on the blockchain with a private key, so that they are only accessible by certain individuals, thereby ensuring privacy.

Property Records

If you have ever spent time in your local Recorder’s Office, you will know that the process of recording property rights is both burdensome and inefficient. Today, a physical deed must be delivered to a government employee at the local recording office, where it is manually entered into the county’s central database and public index. In the case of a property dispute, claims to the property must be reconciled with the public index.
This process is not just costly and time-consuming—it is also prone to human error, where each inaccuracy makes tracking property ownership less efficient. Blockchain has the potential to eliminate the need for scanning documents and tracking down physical files in a local recording office. If property ownership is stored and verified on the blockchain, owners can trust that their deed is accurate and permanently recorded.
In war-torn countries or areas that have little to no government or financial infrastructure, and certainly no Recorder’s Office, it can be nearly impossible to prove ownership of a property. If a group of people living in such an area is able to leverage blockchain, then transparent and clear time lines of property ownership could be established.

Supply Chains

As in the IBM Food Trust example, suppliers can use blockchain to record the origins of materials that they have purchased. This would allow companies to verify the authenticity of not only their products but also common labels such as “Organic,” “Local,” and “Fair Trade.”
As reported by Forbes, the food industry is increasingly adopting the use of blockchain to track the path and safety of food throughout the farm-to-user journey.

Voting

As mentioned above, blockchain could be used to facilitate a modern voting system. Voting with blockchain carries the potential to eliminate election fraud and boost voter turnout, as was tested in the November 2018 midterm elections in West Virginia. Using blockchain in this way would make votes nearly impossible to tamper with. The blockchain protocol would also maintain transparency in the electoral process, reducing the personnel needed to conduct an election and providing officials with nearly instant results. This would eliminate the need for recounts or any real concern that fraud might threaten the election.

Type of  Blockchains Networks

Public blockchain networks

A public blockchain is one that anyone can join and participate in, such as Bitcoin. Drawbacks might include substantial computational power required, little or no privacy for transactions, and weak security. These are important considerations for enterprise use cases of blockchain.

Private blockchain networks

A private blockchain network, similar to a public blockchain network, is a decentralized peer-to-peer network. However, one organization governs the network, controlling who is allowed to participate, execute a consensus protocol and maintain the shared ledger. Depending on the use case, this can significantly boost trust and confidence between participants. A private blockchain can be run behind a corporate firewall and even be hosted on premises.

Permissioned blockchain networks

Businesses who set up a private blockchain will generally set up a permissioned blockchain network. It is important to note that public blockchain networks can also be permissioned. This places restrictions on who is allowed to participate in the network and in what transactions. Participants need to obtain an invitation or permission to join.

Consortium blockchains

Multiple organizations can share the responsibilities of maintaining a blockchain. These pre-selected organizations determine who may submit transactions or access the data. A consortium blockchain is ideal for business when all participants need to be permissioned and have a shared responsibility for the blockchain.

Drawbacks of Blockchains

Technology Cost

Although blockchain can save users money on transaction fees, the technology is far from free. For example, the PoW system which the bitcoin network uses to validate transactions, consumes vast amounts of computational power. In the real world, the power from the millions of computers on the bitcoin network is close to what Norway and Ukraine consume annually.

Despite the costs of mining bitcoin, users continue to drive up their electricity bills to validate transactions on the blockchain. That’s because when miners add a block to the bitcoin blockchain, they are rewarded with enough bitcoin to make their time and energy worthwhile. When it comes to blockchains that do not use cryptocurrency, however, miners will need to be paid or otherwise incentivized to validate transactions.

Some solutions to these issues are beginning to arise. For example, bitcoin-mining farms have been set up to use solar power, excess natural gas from fracking sites, or power from wind farms.

Speed and Data Inefficiency

Bitcoin is a perfect case study for the possible inefficiencies of blockchain. Bitcoin’s PoW system takes about 10 minutes to add a new block to the blockchain. At that rate, it’s estimated that the blockchain network can only manage about seven transactions per second (TPS). Although other cryptocurrencies such as Ethereum perform better than bitcoin, they are still limited by blockchain. Legacy brand Visa, for context, can process 65,000 TPS.

Solutions to this issue have been in development for years. There are currently blockchains that are boasting more than 30,000 TPS. Ethereum’s merge between its main net and beacon chain (Sep. 15, 2022) is predicted to allow up to 100,000 TPS after it rolls out an upgrade that includes sharing—a splitting of the database so that more devices (phones, tablets, and laptops) can run Ethereum. This will increase the network participation, reduce congestion, and increase transaction speeds.

The other issue is that each block can only hold so much data. The block size debate has been, and continues to be, one of the most pressing issues for the scalability of blockchains going forward.

Illegal Activity

While confidentiality on the blockchain network protects users from hacks and preserves privacy, it also allows for illegal trading and activity on the blockchain network. The most cited example of blockchain being used for illicit transactions is probably the Silk Road, an online dark web illegal-drug and money laundering marketplace operating from February 2011 until October 2013, when it was shut down by the FBI.

The dark web allows users to buy and sell illegal goods without being tracked by using the Tor Browser and make illegal purchases in Bitcoin or other cryptocurrencies. Current U.S. regulations require financial service providers to obtain information about their customers when they open an account, verify the identity of each customer, and confirm that customers do not appear on any list of known or suspected terrorist organizations. This system can be seen as both a pro and a con. It gives anyone access to financial accounts but also allows criminals to more easily transact. Many have argued that the good uses of crypto, like banking the unbanked world, outweigh the bad uses of cryptocurrency, especially when most illegal activity is still accomplished through untraceable cash.

While Bitcoin had been used early on for such purposes, its transparent nature and maturity as a financial asset has actually seen illegal activity migrate to other cryptocurrencies such as Monero and Dash. Today, illegal activity accounts for only a very small fraction of all Bitcoin transactions.

Regulation

Many in the crypto space have expressed concerns about government regulation over cryptocurrencies. While it is getting increasingly difficult and near impossible to end something like Bitcoin as its decentralized network grows, governments could theoretically make it illegal to own cryptocurrencies or participate in their networks. 

This concern has grown smaller over time, as large companies like PayPal begin to allow the ownership and use of cryptocurrencies on its platform.

Scroll to Top